Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615009

RESUMO

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Humanos , Animais , Camundongos , Frutose-Bifosfato Aldolase/genética , Catálise , Biblioteca Gênica , Glicina Hidroximetiltransferase/genética , Carnitina , Mamíferos
2.
Plants (Basel) ; 12(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896073

RESUMO

Adventitious rooting is a process of postembryonic organogenesis strongly affected by endogenous and exogenous factors. Although adventitious rooting has been exploited in vegetative propagation programs for many plant species, it is a bottleneck for vegetative multiplication of difficult-to-root species, such as many woody species. The purpose of this research was to understand how N,N'-bis-(2,3-methylenedioxyphenyl)urea could exert its already reported adventitious rooting adjuvant activity, starting from the widely accepted knowledge that adventitious rooting is a hormonally tuned progressive process. Here, by using specific in vitro bioassays, histological analyses, molecular docking simulations and in vitro enzymatic bioassays, we have demonstrated that this urea derivative does not interfere with polar auxin transport; it inhibits cytokinin oxidase/dehydrogenase (CKX); and, possibly, it interacts with the apoplastic portion of the auxin receptor ABP1. As a consequence of this dual binding capacity, the lifespan of endogenous cytokinins could be locally increased and, at the same time, auxin signaling could be favored. This combination of effects could lead to a cell fate transition, which, in turn, could result in increased adventitious rooting.

3.
Biomol Concepts ; 13(1): 164-174, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35334189

RESUMO

Mr4511 from Methylobacterium radiotolerans is a photoreceptor of the light, oxygen voltage (LOV) family, binding flavin mononucleotide (FMN) as a chromophore. It exhibits the prototypical LOV photocycle, with the reversible formation of an FMN-Cys71 adduct via fast decay of the FMN triplet state. Mr4511 has high potential as a photosensitiser for singlet oxygen (SO) upon mutation of C71. Mr4511-C71S shows a triplet lifetime (τ T) of several hundreds of microseconds, ensuring efficient energy transfer to dioxygen to form SO. In this work, we have explored the potential diffusion pathways for dioxygen within Mr4511 using molecular dynamics (MD) simulations. The structural model of wild-type (wt) Mr4511 showed a dimeric structure stabilised by a strong leucine zipper at the two C-terminal helical ends. We then introduced in silico the C71S mutation and analysed transient and persistent oxygen channels. MD simulations indicate that the chromophore binding site is highly accessible to dioxygen. Mutations that might favour SO generation were designed based on their position with respect to FMN and the oxygen channels. In particular, the C71S-Y61T and C71S-Y61S variants showed an increased diffusion and persistence of oxygen molecules inside the binding cavity.


Assuntos
Methylobacterium , Oxigênio , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Methylobacterium/metabolismo , Simulação de Dinâmica Molecular , Oxigênio/química
4.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209187

RESUMO

We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the 'discrimination index'). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases' observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the 'physiological' substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.


Assuntos
Transaminases/química , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Aminoácidos/química , Animais , Sítios de Ligação , Bovinos , Ativação Enzimática , Humanos , Cinética , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Transaminases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
5.
Arch Biochem Biophys ; 714: 109079, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748734

RESUMO

Collagen dehydration is an unavoidable damaging process that causes the lack of fibers' physical properties and it is usually irreversible. However, the identification of low hydration conditions that permit a recovering of initial collagen features after a rehydration treatment is particularly of interest. Monitoring structural changes by means of MD simulations, we investigated the hydration-dehydration-rehydration cycle of two microfibril models built on different fragments of the sequence of rat tail collagen type I. The microfibrils have different hydropathic features, to investigate the influence of amino acid composition on the whole process. We showed that with low hydration at a level corresponding to the first shell, microfibril gains in compactness and tubularity. Crucially, some water molecules remain trapped inside the fibrils, allowing, by rehydrating, a recovery of the initial collagen structural features. Water rearranges in cluster around the protein, and its first layer is more anchored to the surface. However, these changes in distribution and mobility in low hydration conditions get back with rehydration.


Assuntos
Colágeno/química , Água/química , Sequência de Aminoácidos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
6.
Photochem Photobiol Sci ; 19(7): 892-904, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32579655

RESUMO

In this work we exploited time-resolved photoacoustics (PA) and molecular dynamics (MD) simulations to investigate the function of a conserved phenylalanine residue in blue sensing (BL) LOV domains. The LOV photocycle involves reversible formation of a photoproduct (LOV390) where the flavin mononucleotide (FMN) chromophore is covalently bound to a cysteine. LOV390 thermally returns to the dark adapted state (LOV447) with a lifetime τrec (s-to-h). In the LOV domain of Bacillus subtilis BsYtvA, the conserved F46 is one of the few residues undergoing a pronounced light-driven conformational change. PA and spectroscopic data show that in the YtvA variants F46A and F46Y light-induced structural changes are much smaller than those in the wild type (wt) protein, τrec is strongly accelerated and the energy content of LOV390 is lower for F46Y. MD simulations for each variant in the LOV447 and LOV390 states revealed an overall very stable structure of the BsYtvA-LOV domain. The largest variations emerged for the conserved HB network that includes FMN, Q123 (the "flipping" glutamine of LOV domains), and the conserved N104 and N94, with strong dependence on the presence of water. The lateral chain of Q123 in wt-LOV447 can adopt three alternative conformations, and movements act in concert with F46 flexibility. In LOV390, Q123 remains instead fixed in the orientation adopted in the crystal structure. Interestingly, in F46A, Q123 is locked in a LOV447-like conformation (pseudo-dark-adapted state), in both LOV447 and LOV390. In LOV447 of F46Y the tyrosine hydroxyl group fixes a water molecule, which induces a Q123 conformation similar to wt-LOV390, i.e. a pseudo-photoproduct state. These pseudo-dark-adapted and photoproduct-like conformations of the Q123 sidechain may account for the strong acceleration of the photocycle in the two variants. Given the importance of the "flipping" glutamine in light-to-signal propagation in LOV proteins, the results presented here underscore a crucial structural and functional role of the conserved F46. MD results also indicate that F46 is not directly engaged in permeability of the FMN pocket, but is involved in solvent ordering and the formation of water bridges.


Assuntos
Proteínas de Bactérias/química , Glutamina/química , Luz , Água/química , Bacillus subtilis/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fenilalanina/química
7.
Biophys Chem ; 253: 106224, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351390

RESUMO

Self-assembly of rat tail collagen type I was investigated by means of turbidity measurements and molecular dynamics simulations. Turbidity curves collected at different pH values show that the rate of aggregation was not linear in dependence from pH, with the fastest kinetics at pH 5.0 and the lowest at neutral pH. MD simulations were carried out on two regions with different hydropathicity, monitoring the aggregation of up to four staggered tropocollagen fragments at different ionic strength. At physiological conditions, association of lowly charged regions occurs more easily than for highly charged ones, the latter seeming to aggregate in a sequential way. The first contacts indicate for both regions that the driving force is hydrophobic, the electrostatic contribution becoming relevant at short distance. The direct inter-tropocollagen H-bonds confirm that fibrillogenesis is driven by loss of surface water from the monomers and involves in large percentage hydroxyproline residues. Low ionic strength dynamics leads to the formation of incorrect assemblies, driven by not shielded pairwise charge interactions.


Assuntos
Colágeno Tipo I/síntese química , Simulação de Dinâmica Molecular , Animais , Colágeno Tipo I/química , Ligação de Hidrogênio , Ratos , Espectrofotometria Ultravioleta , Cauda/química
8.
Arch Biochem Biophys ; 645: 107-116, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567208

RESUMO

Four Cellular Retinol-binding Proteins (CRBP 1, 2, 3, 4) are encoded in the human genome. CRBP 1 and 2, sharing a 56% amino acid sequence identity, exhibit the highest binding affinities for retinol. Previous NMR studies provided some insights into the mechanism of retinol uptake, but details of such mechanism remain to be elucidated. Herein, the results of molecular dynamics simulations for the uptake of retinol by CRBP 1 and 2 are consistent with the presence of two different retinol entry points, both involving the 'cap region' (α-helices I and II and neighboring loops). We observed that a hydrophobic patch at the surface of the 'portal region' (α-helix II, CD and EF loops) of CRBP 1 attracts retinol, which accesses the binding cavity through an opening generated by the concerted movements of Arg58 and Phe57, present in the CD loop. In CRBP 2 a different distribution of the surface residues of the 'cap region' allows retinol to access the binding cavity by sinking in a hydrophobic matrix between the two α-helices. Polar interactions mainly affect retinol movements inside the ß-barrel cavities of both CRBPs. The interaction energy profiles are in agreement with the different behavior of the two protein systems.


Assuntos
Proteínas Celulares de Ligação ao Retinol/química , Proteínas Celulares de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice
9.
PLoS One ; 13(1): e0190778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29364903

RESUMO

Naja atra subsp. atra cardiotoxin 1 (CTX-1), produced by Chinese cobra snakes, belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. Using as template mainly the tip and the subsequent ß-strand of the first "finger" of this toxin, different sequences of 20 amino acids linear peptides have been designed in order to avoid toxic effects but to maintain or even strengthen the partial antimicrobial activity already seen for the complete toxin. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently 4 other variant sequences of NCP-0 were developed. These synthesized variant sequences have shown microbicidal activity towards a panel of reference and field strains of Gram-positive and Gram-negative bacteria. The sequence named NCP-3, and its variants NCP-3a and NCP-3b, have shown the best antimicrobial activity, together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 µg/ml for most of the tested bacterial strains. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 50-6.3 µg/ml), and against the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Moreover, NCP-3 has shown virucidal activity on Bovine Herpesvirus 1 (BoHV1) belonging to Herpesviridae family. The bactericidal activity is maintained even in a high salt concentration medium (125 and 250 mM NaCl) and phosphate buffer with 20% Mueller Hinton (MH) medium against E. coli, methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, the search for active sequences within proteins presenting an intrinsic microbicidal activity could provide a new way for discovering a large number of novel and promising antimicrobial peptides families.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas Cardiotóxicas de Elapídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Candida/efeitos dos fármacos , Bovinos , Dicroísmo Circular , Hemólise/efeitos dos fármacos , Herpesvirus Bovino 1/efeitos dos fármacos , Malassezia/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium/efeitos dos fármacos , Naja naja , Peptídeos/química , Conformação Proteica , Ovinos , Staphylococcus aureus/efeitos dos fármacos
10.
J Struct Biol ; 197(3): 330-339, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28057518

RESUMO

Four cellular retinol-binding protein (CRBP) types (CRBP1,2,3,4) are encoded in the human genome. Here, we report on X-ray analyses of human apo- and holo-CRBP1, showing nearly identical structures, at variance with the results of a recent study on the same proteins containing a His-Tag, which appears to be responsible for a destabilizing effect on the apoprotein. The analysis of crystallographic B-factors for our structures indicates that the putative portal region, in particular α-helix-II, along with Arg58 and the E-F loop, is the most flexible part of both apo- and holoprotein, consistent with its role in ligand uptake and release. Fluorometric titrations of wild type and mutant forms of apo-CRBP1, coupled with X-ray analyses, provided insight into structural and molecular determinants for the interaction of retinol with CRBP1. An approximately stoichiometric binding of retinol to wild type apo-CRBP1 (Kd∼4.5nM), significantly lower binding affinity for both mutants Q108L (Kd∼65nM) and K40L (Kd∼70nM) and very low binding affinity for the double mutant Q108L/K40L (Kd∼250nM) were determined, respectively. Overall, our data indicate that the extensive apolar interactions between the ligand and hydrophobic residues lining the retinol binding cavity are sufficient to keep it in its position bound to CRBP1. However, polar interactions of the retinol hydroxyl end group with Gln108 and Lys40 play a key role to induce a high binding affinity and specificity for the interaction.


Assuntos
Proteínas Celulares de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
11.
J Inorg Biochem ; 152: 10-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26335598

RESUMO

A series of quinoline-2-carboxaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes were synthesized and characterized. In all complexes the ligands are in the E configuration with respect to the imino bond and behave as terdentate. The copper(II) complexes form square planar derivatives with one molecule of terdentate ligand and chloride ion. A further non-coordinated chloride ion compensates the overall charge. Nickel(II) ions form instead octahedral complexes with two ligands for each metal ion, independently from the stoichiometric metal:ligand ratio used in the synthesis. Ligands and complexes were tested for their antiproliferative properties on histiocytic lymphoma cell line U937. Copper(II) derivatives are systematically more active than the ligands and the nickel complexes. All copper derivatives result in inhibiting topoisomerase IIa in vitro. Computational methods were used to propose a model to explain the different extent of inhibition presented by these compounds. The positive charge of the dissociated form of the copper complexes may play a key role in their action.


Assuntos
Aldeídos/química , Cobre/química , DNA Topoisomerases Tipo II/metabolismo , Níquel/química , Compostos Organometálicos/farmacologia , Quinolinas/química , Tiossemicarbazonas/química , Inibidores da Topoisomerase II/farmacologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/química , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Compostos Organometálicos/síntese química , Ligação Proteica , Inibidores da Topoisomerase II/síntese química
12.
Plant Physiol Biochem ; 83: 225-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25180813

RESUMO

NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant and ubiquitous enzyme that may exist in different isoenzymic forms. Variation in the composition of the GDH isoenzyme pattern is observed during plant development and specific cell, tissue and organ localization of the different isoforms have been reported. However, the mechanisms involved in the regulation of the isoenzymatic pattern are still obscure. Regulation may be exerted at several levels, i.e. at the level of transcription and translation of the relevant genes, but also when the enzyme is assembled to originate the catalytically active form of the protein. In Arabidopsis thaliana, three genes (GDH1, GDH2 and GDH3) encode three different GDH subunits (ß, α and γ) that randomly associate to form a complex array of homo- and hetero-hexamers. In order to asses if the different Arabidopsis GDH isoforms may display different structural properties we have investigated their thermal stability. In particular the stability of GDH1 and GDH3 isoenzymes was studied using site-directed mutagenesis in a heterologous yeast expression system. It was established that the carboxyl terminus of the GDH subunit is involved in the stabilization of the oligomeric structure of the enzyme.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Desidrogenase de Glutamato (NADP+) , Temperatura Alta , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estabilidade Enzimática , Desidrogenase de Glutamato (NADP+)/química , Desidrogenase de Glutamato (NADP+)/genética , Desidrogenase de Glutamato (NADP+)/metabolismo , Isoenzimas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
13.
Plant Physiol Biochem ; 73: 368-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24189523

RESUMO

In higher plants, NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant enzyme that exists in different isoenzymic forms. In Arabidopsis thaliana, three genes (Gdh1, Gdh2 and Gdh3) encode three different GDH subunits (ß, α and γ) that randomly associate to form a complex array of homo- and heterohexamers. The modification of the GDH isoenzyme pattern and its regulation was studied during the development of A. thaliana in the gdh1, gdh2 single mutants and the gdh1-2 double mutant, with particular emphasis on GDH3. Investigations showed that the GDH3 isoenzyme could not be detected in closely related Arabidopsis species. The induction and regulation of GDH3 activity in the leaves and roots was investigated following nitrogen deprivation in the presence or absence of sucrose or kinetin. These experiments indicate that GDH3 is likely to play an important role during senescence and nutrient remobilization.


Assuntos
Arabidopsis/genética , Metabolismo dos Carboidratos/genética , Carbono/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato Desidrogenase/genética , Nitrogênio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Celular , Genes de Plantas , Glutamato Desidrogenase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinetina/metabolismo , Mutação , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Multimerização Proteica , Subunidades Proteicas , Especificidade da Espécie , Sacarose/metabolismo
14.
PLoS One ; 8(7): e68175, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861868

RESUMO

The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure of the peptides through altered electrostatic interactions. The results support the hypothesis that the central conserved segment of MBP constitutes a molecular switch in which the conformation and/or intermolecular interactions are mediated by phosphorylation/dephosphorylation at T92 and T95.


Assuntos
Proteína Básica da Mielina/química , Proteína Básica da Mielina/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Animais , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Domínios Proteicos Ricos em Prolina , Estabilidade Proteica , Proteínas Recombinantes , Alinhamento de Sequência , Termodinâmica , Treonina/química , Água
15.
Biochim Biophys Acta ; 1834(6): 1070-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23429182

RESUMO

Virulent lactococcal phages of the Siphoviridae family are responsible for the industrial milk fermentation failures worldwide. Lactococcus lactis, a Gram-positive bacterium widely used for the manufacture of fermented dairy products, is subjected to infections by virulent phages, predominantly those of the 936 group, including phage p2. Among the proteins coded by lactococcal phage genomes, of special interest are those expressed early, which are crucial to efficiently carry out the phage lytic cycle. We previously identified and solved the 3D structure of lactococcal phage p2 ORF34, a single stranded DNA binding protein (SSBp2). Here we investigated the molecular basis of ORF34 binding mechanism to DNA. DNA docking on SSBp2 and Molecular Dynamics simulations of the resulting complex identified R15 as a crucial residue for ssDNA binding. Electrophoretic Mobility Shift Assays (EMSA) and Atomic Force Microscopy (AFM) imaging revealed the inability of the Arg15Ala mutant to bind ssDNA, as compared to the native protein. Since R15 is highly conserved among lactococcal SSBs, we propose that its role in the SSBp2/DNA complex stabilization might be extended to all the members of this protein family.


Assuntos
Bacteriófago P2/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Lactococcus lactis/virologia , Proteínas Virais/metabolismo , Bacteriófago P2/genética , DNA de Cadeia Simples/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Microscopia de Força Atômica/métodos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Mutação , Dobramento de Proteína , Proteínas Virais/genética
16.
Biochemistry ; 51(38): 7475-87, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22947219

RESUMO

The 18.5 kDa myelin basic protein (MBP), the most abundant splice isoform in adult mammalian myelin, is a multifunctional, intrinsically disordered protein involved in the development and compaction of the myelin sheath in the central nervous system. A highly conserved central segment comprises a membrane-anchoring amphipathic α-helix followed by a proline-rich segment that represents a ligand for SH3 domain-containing proteins. Here, we have determined using solution nuclear magnetic resonance spectroscopy the structure of a 36-residue peptide fragment of MBP (murine 18.5 kDa residues S72-S107, denoted the α2-peptide) comprising these two structural motifs, in association with dodecylphosphocholine (DPC) micelles. The structure was calculated using CS-ROSETTA (version 1.01) because the nuclear Overhauser effect restraints were insufficient for this protein. The experimental studies were complemented by molecular dynamics simulations of a corresponding 24-residue peptide fragment (murine 18.5 kDa residues E80-G103, denoted the MD-peptide), also in association with a DPC micelle in silico. The experimental and theoretical results agreed well with one another, despite the independence of the starting structures and analyses, both showing membrane association via the amphipathic α-helix, and a sharp bend in the vicinity of the Pro93 residue (murine 18.5 kDa sequence numbering). Overall, the conformations elucidated here show how the SH3 ligand is presented to the cytoplasm for interaction with SH3 domain-containing proteins such as Fyn and contribute to our understanding of myelin architecture at the molecular level.


Assuntos
Micelas , Simulação de Dinâmica Molecular , Proteína Básica da Mielina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Fosforilcolina/análogos & derivados , Sequência de Aminoácidos , Animais , Camundongos , Fosforilcolina/química
17.
Biochemistry ; 51(9): 1885-94, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22332965

RESUMO

α-KTx toxin Tc32, from the Amazonian scorpion Tityus cambridgei, lacks the dyad motif, including Lys27, characteristic of the family and generally associated with channel blockage. The toxin has been cloned and expressed for the first time. Electrophysiological experiments, by showing that the recombinant form blocks Kv1.3 channels of olfactory bulb periglomerular cells like the natural Tc32 toxin, when tested on the Kv1.3 channel of human T lymphocytes, confirmed it is in an active fold. The nuclear magnetic resonance-derived structure revealed it exhibits an α/ß scaffold typical of the members of the α-KTx family. TdK2 and TdK3, all belonging to the same α-KTx 18 subfamily, share significant sequence identity with Tc32 but diverse selectivity and affinity for Kv1.3 and Kv1.1 channels. To gain insight into the structural features that may justify those differences, we used the recombinant Tc32 nuclear magnetic resonance-derived structure to model the other two toxins, for which no experimental structure is available. Their interaction with Kv1.3 and Kv1.1 has been investigated by means of docking simulations. The results suggest that differences in the electrostatic features of the toxins and channels, in their contact surfaces, and in their total dipole moment orientations govern the affinity and selectivity of toxins. In addition, we found that, regardless of whether the dyad motif is present, it is always a Lys side chain that physically blocks the channels, irrespective of its position in the toxin sequence.


Assuntos
Canal de Potássio Kv1.3/química , Venenos de Escorpião/química , Toxinas Biológicas/química , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Canal de Potássio Kv1.3/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Relação Estrutura-Atividade , Toxinas Biológicas/metabolismo
18.
Int J Mol Sci ; 12(4): 2294-314, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731442

RESUMO

The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the ß-barrel lipocalin scaffold.


Assuntos
Receptores Odorantes/química , Animais , Antracenos/química , Bovinos , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Suínos
19.
Biochim Biophys Acta ; 1808(3): 674-83, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21130728

RESUMO

The 18.5 kDa isoform of myelin basic protein is essential to maintaining the close apposition of myelin membranes in central nervous system myelin, but its intrinsic disorder (conformational dependence on environment), a variety of post-translational modifications, and a diversity of protein ligands (e.g., actin and tubulin) all indicate it to be multifunctional. We have performed molecular dynamics simulations of a conserved central segment of 18.5 kDa myelin basic protein (residues Glu80-Gly103, murine sequence numbering) in aqueous and membrane-associated environments to ascertain the stability of constituent secondary structure elements (α-helix from Glu80-Val91 and extended poly-proline type II from Thr92-Gly103) and the effects of phosphorylation of residues Thr92 and Thr95, individually and together. In aqueous solution, all four forms of the peptide bent in the middle to form a hydrophobic cluster. The phosphorylated variants were stabilized further by electrostatic interactions and formation of ß-structures, in agreement with previous spectroscopic data. In simulations performed with the peptide in association with a dimyristoylphosphatidylcholine bilayer, the amphipathic α-helical segment remained stable and membrane-associated, although the degree of penetration was less in the phosphorylated variants, and the tilt of the α-helix with respect to the plane of the membrane also changed significantly with the modifications. The extended segment adjacent to this α-helix represents a putative SH3-ligand and remained exposed to the cytoplasm (and thus accessible to binding partners). The results of these simulations demonstrate how this segment of the protein can act as a molecular switch: an amphipathic α-helical segment of the protein is membrane-associated and presents a subsequent proline-rich segment to the cytoplasm for interaction with other proteins. Phosphorylation of threonyl residues alters the degree of membrane penetration of the α-helix and the accessibility of the proline-rich ligand and can stabilize a ß-bend. A bend in this region of 18.5 kDa myelin basic protein suggests that the N- and C-termini of the proteins can interact with different leaflets of the myelin membrane and explain how a single protein can bring them close together.


Assuntos
Membrana Celular/metabolismo , Proteína Básica da Mielina/química , Proteína Básica da Mielina/metabolismo , Processamento de Proteína Pós-Traducional , Treonina/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Animais , Camundongos , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosforilação , Estrutura Secundária de Proteína , Treonina/química
20.
PLoS One ; 5(4): e10300, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20421974

RESUMO

The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 A. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.


Assuntos
Proteína P2 de Mielina/química , Proteína P2 de Mielina/fisiologia , Sistema Nervoso Periférico/química , Colesterol , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Bainha de Mielina/química , Ácido Palmítico/química , Ligação Proteica , Conformação Proteica , Soluções , Espectrometria de Fluorescência , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...